
 1

Semantics of COW

 /; ;\
 __ ____//
 /{__/ `'____
 ___ (o) (o }
 _____________________________/ :--'
 ,-,'`@@@@@@@@ @@@@@@ _ `__\
 ;:(@@@@@@@@@ @@@ ___(o'o)
 ::) @@@@ @@@@@@ ,'@@(`====' Moo!
 :: : @@@@@: @@@@ `@@@:
 :: \ @@@@@: @@@@@@@) ('@@@'
 ;; /\ /`, @@@@@@@@@\ :@@@@@)
 ::/) {_----------------: :~`,~~;
 ;;'`; :) : / `; ;
;;;; : : ; : ; ; :
`'`' / : : : : : :
)_ __; ";" :_ ; _\ `,','
 :__\ \ * `,'* \ \ : \ * 8`;'* *
 ` ` ` `^' ` ` \ :/ ` ` ` ` ` `^' `-^-' ` \v/ `: \/

July 2004

Alex van Oostenrijk and Martijn van Beek

 2

Table of Contents
Table of Contents ...2
Summary ...3
Language Specification...3
Syntax ...3
State..4

Accessing the state ...4
Natural Semantics ..5

Trivial instructions ..5
Loop-instructies ...6

Loop execution ..6
Forward search..6
Example of a nested loop ...7

Instruction generation ..7
Structural Operational Semantics...9

Trivial instructions ..9
Loop instructions ...9

Loop execution ..9
Forward search..9

Instruction generation ..10
Comparison of semantics denotations ..10
Turing Completeness ..11

Computable functions ..11
Proof structure...11
Function mechanism..11
Basic functions ..13
Functional composition ..13
Primitive recursion...13
Minimalisation ...14
Result ...15

References...16

 3

Summary
In this paper we describe the semantics of the programming language “COW.” COW is a fun
language developed within the Esoteric Programming Languages Ring, in which all keywords are
some form of MOO. We present natural and structural operational semantics for the language.
We also show that COW is Turing complete.

Language Specification
The following table contains all instructions available in COW, according to [Heber]. It is important
to note that COW syntax does not enforce any particular instruction order. Instructions can be
written in arbitrary order and still make a correct COW program. This has nasty consequences for
loops, because loops consist of two instructions (MOO and moo) that belong together. In the
remainder of this text we discuss the problems that arise in the semantics and how they can be
solved.

Code Instruction Meaning

0 moo This command is connected to the MOO command. When
encountered during normal execution, it searches the program code
in reverse looking for a matching MOO command and begins
executing again starting from the found MOO command. When
searching, it skips the instruction that is immediately before it (see
MOO).

1 mOo Moves current memory position back one block.

2 moO Moves current memory position forward one block.

3 mOO Execute value in current memory block as if it were an instruction.
The command executed is based on the instruction code value (for
example, if the current memory block contains a 2, then the moO
command is executed). An invalid command exits the running
program. Value 3 is invalid as it would cause an infinite loop.

4 Moo If current memory block has a 0 in it, read a single ASCII character
from STDIN and store it in the current memory block. If the current
memory block is not 0, then print the ASCII character that
corresponds to the value in the current memory block to STDOUT.

5 MOo Decrement current memory block value by 1.

6 MoO Increment current memory block value by 1.

7 MOO If current memory block value is 0, skip next command and resume
execution after the next matching moo command. If current memory
block value is not 0, then continue with next command.

8 OOO Set current memory block value to 0.

9 MMM If no current value in register, copy current memory block value. If
there is a value in the register, then paste that value into the current
memory block and clear the register.

10 OOM Print value of current memory block to STDOUT as an integer.

11 oom Read an integer from STDIN and put it into the current memory
block.

Syntax
The grammar of COW is specified as follows:

 4

S ::= moo | mOo | moO | mOO | Moo | MOo | MoO | MOO | OOO | MMM | OOM | oom | S1 S2.

Here, S is short for statement. It is not necessary to separate statements from each other in a
composition, since all COW statements have a length of precisely three characters so that a
parser is able to determine where a statement begins and where it ends.
Since MOO and moo form a while-loop together, it seems logical to join them as one syntactical
construction. Unfortunately, we cannot do so because the instruction mOO can produce individual
MOOs and moos, so that (half) while-loops can be formed dynamically. It is also possible for a
program to end while still inside a while-loop!

State
We represent the state as a 6-tuple s = (M, p, r, V, W, l) where:

• M is an infinite list m0, m1, … with mi ∈ Z, which represents the memory (data storage). At
the start of program execution, this list is filled with zeros.

• p ∈ N is the memory pointer. It points to the active memory element mp ∈ M. The memory
points is initially 0 and can never be negative..

• r ∈ Z ∪ ε is the register (see the MMM instruction). The register is initially empty (ε).

• V is a finite list of input values v0,…,vn where vi ∈ Z, representing the input values that are
given to the program using the keyboard (from STDIN). At the start of program execution the
list contains zero or more elements (n ≥ 0).

• W is a finite list of output values w0, …, wn where wi ∈ Z, representing the output values of
the program (sent to STDOUT). The list W is initially empty (n = 0).

• l is the nesting level, necessary for searching through while-loops (see natural semantics). At
the start of program execution, the nesting level is 0.

We choose to model input and output as part of the state, so that the semantics of a program with
a given input (as a list of numbers) can be determined. Moreover, the input from stdin and
output to stdout play an important role in COW. We want to be able to study the execution of a
program by evaluating the final state of a program; this final state will contain the input and output
lists after execution of the program has completed.

Accessing the state
Since the state is complex and not simply a function Var → Z, like in the language While (see
[Nielson92]), we must find a new method to access and modify the state. This method may
consist of a number of functions with signature State → State (actually comparable to the
substitution operation used in [Nielson92]).
In order to execute instructions in COW, we need access to all elements in the state, and not just
the memory M. This means that we need a function for each type of modification. As an example,
the function d decrements the memory pointer by 1:

(m,p-1,r,v,w,l) if p > 0
δ(m,p,r,v,w,l) = { (m,p,r,v,w,l) otherwise

Of course, we can think of more convenient denotations:

s[p → p -1] if p > 0
δ(s) = { s otherwise

This is possible because the functions generally work on only one part of the state. The
definitions that increment, decrement or set the current memory block’s value to zero, and the
functions that add numbers to the output list or read numbers from the input list are trivial to
construct.

 5

We must be careful that no work is done in the function definitions that should be done in the
specification of the natural semantics. We could have a function that evaluates the instruction
Moo:

4 Moo If current memory block has a 0 in it, read a single ASCII character
from STDIN and store it in the current memory block. If the current
memory block is not 0, then print the ASCII character that
corresponds to the value in the current memory block to STDOUT.

This is possible because all the required information is stored in the state, but the effect of Moo
can also be expressed in the rules for natural semantics, which is cleaner and more elegant. For
this reason, we choose to define only very simple functions to modify the state. These functions
will have no names. We will use the following intuitive syntax instead:

<Moo, S> → s[mp → v0, v → tail(v)] als mp = 0

One can imagine an s prefix, as in s.mp, so that the denotation resembles records in the Clean
programming language. For operations on lists (arrays), we use the following simple operators
taken from Clean:

Function Meaning Example

++ List concatenation [1,2] ++[3,4] → [1,2,3,4]

head First element of a list head [1,2,3] → 1

tail List minus its first element tail [1,2,3] → [2,3]

Natural Semantics
The natural semantics of COW is easy to write, were it not for the instruction mOO (3) which
wrecks the day. Since we were unable to enforce complete while-loops in the syntax (but allow
two halves instead), we have to deal with this problem in the natural semantics.

Trivial instructions
All instructions save 0, 3 and 7 are trivial to describe, and so is the composition of statements:

<S1, s> → s’, <S2,s’> → s’’
[comp]

<S1 S2, s> → s’’

1 [mOop>0] <mOo, s> → s[p → p - 1] if p > 0

1 [mOop=0] <mOo, s> → s if p = 0

2 [moO] <moO, s> → s[p → p + 1]

4 [Mooin] <Moo, s> → s[mp → v0, v → tail(v)] if mp = 0

4 [Mooout] <Moo, s> → s[v → v + mp] if mp ≠ 0

5 [MOo] <MOo, s> → s[mp → mp – 1]

6 [MoO] <MoO, s> → s[mp → mp + 1]

8 [OOO] <OOO, s> → s[mp → 0]

9 [MMM] <MMM, s> → s[r → mp] if r = ε

9 [MMM] <MMM, s> → s[mp → r, r → ε] if r ≠ ε

10 [OOM] <OOM, s> → s[w → w ++ mp]

11 [oom] <oom, s> → s[mp → v0, v → tail(v)]

 6

Loop-instructies
We have to do more work for instructions 0 and 7 (moo and MOO), because of the existence of half
while-loops. We will solve this using an environment, in which we store the body of a while-loop.
In fact, we store all the statements that follow MOO (including MOO itself). The environment env is a
list of statements (initially empty). When a while-loop begins, the instruction MOO places all the
statements that follow it in the enviroment. The end of the loop, moo, retrieves all the statements
from the environment and executes them, thereby execution the loop again. Since loops may be
nested, it is necessary that the environment contains a list of statements. An example of an
environment that contains the body of two nested loops is:

env = [[MOO MOO OOO moo moo], [MOO OOO moo moo]]

Note that the desired effect could have been achieved using continuations (see the semantics for
break in [Nielson92]). Still, the use of continuations still requires a nesting flag (see below), so
that the semantics will be equally complex.

Loop execution

If mp ≠ 0, then all instructions following MOO must be executed until the matching moo is found.
Since we cannot look back in the code after finding a moo instruction, we must use an
environment. Upon entry of the loop, we save all the statements that follow MOO in the
environment, and upon execution of moo we take them off again. This process can be executed
with nesting, where multiple pieces of code are stored in the environment.

push(MOO S, env) + <S, s> → s’
[MOOloop]

env + <MOO S, s> → s’
if mp ≠ 0

pop(env)+ <S, s’> → s’
[mooloop]

env + <moo, s> → s’
where top(env) = S

Access to the environment is provided using the functions push, pop and top, which are defined
as follows:

push: S × env → env = env ++ S
pop: env → env = tail(env)
top: env → S = head(env)

The environment is a list of statement lists. The auxiliary functions ++, head and tail have
definitions similiar to their definitions in the Clean language.

Forward search
According to the specification of MOO, this instruction must skip all instructions that follow it (until
the matching moo is found) when mp = 0. Note that when searching, we must always skip the
instruction that directly following MOO.

In order to fulfill this last condition, we immediately replace MOO with MOO2 and skip the instruction
immediately following MOO. We use the composition of statements in the five natural semantics
rules for MOO below. To make sure that searching only stops when the matching moo is found
(and not just a nested moo), we keep track of the nesting level in the state (as l).

env + <MOO2 S2, s> → s’
[MOObegin search]

env + <(MOO S1) S2, s> → s’
if mp = 0

env + <MOO2 S2, s> → s’
[MOOsearch]

env + <(MOO2 S1) S2, s> → s’
S1 ≠ MOO & S1 ≠ moo

[MOObegin nest] env + <MOO2 S2, s[l → l + 1]> → s’

 7

env + <(MOO2 MOO) S2, s> → s’
env + <MOO2 S2, s[l → l – 1]> → s’

[MOOend nest]
env + <(MOO2 moo) S2, s> → s’

if l > 0

[MOOend search] env + <(MOO2 moo) S2, s> → s if l = 0

Example of a nested loop
We determine the natural semantics of the following program, starting from a state where mp = 1.
The program consist of two nested loops, both of which must be executed exactly one (since
mp = 1).

MOO
OOM
MOO
OOO
moo
moo

 [] + <MOO2 moo, s> → s
 [] + <MOO2 moo, s[l → l – 1]> → s
 [] + <MOO2 moo moo, s> → s
 [] + <MOO2 OOO moo moo, s[l →l+1]> → s

[outer] + <MOO2 moo moo, s> → s [] + <MOO2 MOO OOO moo moo, s> → s
[outer] + <MOO OOO moo moo, s> → s [] + <MOO OOM MOO OOO moo moo, s> → s

[outer,inner] <moo, s> → s [outer] <moo, s> → s

[outer,inner] + <OOO, s> → s[mp → 0]
[outer,inner] <moo moo, s> → s

[outer,inner:=[MOO OOO moo moo]] + <OOO moo moo, s> → s

[outer] + <OOM, s> → s[w → w ++ mp]
[outer] <MOO OOO moo moo, s> → s

[outer:=[MOO OOM MOO OOO moo moo]] + <OOM MOO OOO moo moo, s> → s
[] + <MOO OOM MOO OOO moo moo, s> → s

Explanation
The first MOO in the program initiates a loop that will be executed. Immediately before execution,
the loop body (i.e. the rest of the program) is stored in the environment and execution continues
with the statement that follows MOO. The next MOO does the same thing (since mp is still 1) and
the remainder of the program after the second MOO is also placed in the environment. Execution
continues.

The first moo makes sure that the inner loop loops. It retrieves the code for the inner loop from the
stack and executes it. At this point mp = 0, so that all instructions after MOO are skipped until the
matching moo is found, after which execution is resumed. The same thing happens for the last
moo, but note that after a MOO with mp = 0, the instruction immediately following it is always
skipped, until the matching moo is found. This means that we must keep track of the nesting level
in the state (and we do just that in this example).

Instruction generation
The natural semantics described above still lacks the mOO instruction, which executes a value
from memory as if it were an instruction. With our loop definitions this works just right. The natural
semantics of mOO can de defined as a group of rules. There is no rule for mp = 3, since that would
result in an infinite loop.

inner
loop

outer
loop

 8

<moo, s> → s’

[mOO0]
<mOO, s> → s’

if mp = 0

<mOo, s> → s’
[mOO1]

<mOO, s> → s’
if mp = 1

<moO, s> → s’
[mOO2]

<mOO, s> → s’
if mp = 2

<Moo, s> → s’
[mOO4]

<mOO, s> → s’
if mp = 4

<MOo, s> → s’
[mOO5]

<mOO, s> → s’
if mp = 5

<MoO, s> → s’
[mOO6]

<mOO, s> → s’
if mp = 6

<MOO, s> → s’
[mOO7]

<mOO, s> → s’
if mp = 7

<OOO, s> → s’
[mOO8]

<mOO, s> → s’
if mp = 8

<MMM, s> → s’
[mOO9]

<mOO, s> → s’
if mp = 9

<OOM, s> → s’
[mOO10]

<mOO, s> → s’
if mp = 10

<oom, s> → s’
[mOO11]

<mOO, s> → s’
if mp = 11

 9

Structural Operational Semantics
As opposed to natural semantics (big-step semantics), structural operations (small-step
semantics) describes how the first (smallest) step of the execution of a statement takes place.

Trivial instructions
The instructions that were trivial to specify in natural semantics (all instructions save 0, 3 and 7)
are also trivial in structural operational semantics, since they consist of precisely one step. These
instructions reduce to a final state right away. An exception is the composition of statements,
which consists of two parts.

 <S1, s> ⇒ <S’1, s’>
[comp1]

 <S1 S2, s> ⇒ <S’1 S2, s’>
If statement S1 cannot be executed ine
one step

 <S1, s> ⇒ s’
[comp2]

 <S1 S2, s> ⇒ <S2, s’>
If statement S1 can be executed in one
step

1 [mOop=0] <mOo, s> ⇒ s if p = 0

2 [moO] <moO, s> ⇒ s[p → p + 1]

4 [Mooin] <Moo, s> ⇒ s[mp → v0, v → tail(v)] if mp = 0

4 [Mooout] <Moo, s> ⇒ s[v → v + mp] if mp ≠ 0

5 [MOo] <MOo, s> ⇒ s[mp → mp – 1]

6 [MoO] <MoO, s> ⇒ s[mp → mp + 1]

8 [OOO] <OOO, s> ⇒ s[mp → 0]

9 [MMM] <MMM, s> ⇒ s[r → mp] if r = ε

9 [MMM] <MMM, s> ⇒ s[mp → r, r → ε] if r ≠ ε

10 [OOM] <OOM, s> ⇒ s[w → w ++ mp]

11 [oom] <oom, s> ⇒ s[mp → v0, v → tail(v)]

Loop instructions
Just like in natural semantics, in structural operational semantics we use an enviroment to store
the bodies of while loops. Because of the existence of ‘half’ while loops it was necessary to
denote the natural semantics in a style which strongly resembles structural operational
semantics, and it turns out that the denotation of the latter does not differ much from the former.

Loop execution
The rules for loop instructions are analogous to the natural semantics rules, the only difference
being that we only rewrite the instructions, and do not describe an iteration’s final state (i.e. there
is no s’).

[MOOloop] env + <MOO S, s> ⇒ push(MOO S, env) + <S, s> if mp ≠ 0
[mooloop] env + <moo, s> → pop(env) + <S, s> where top(env) = S

The functions push, pop and top that allow access to the environment are unchanged.

Forward search
The rules for forward search in a loop are also analogous to the rules in natural semantics. The
structural operational semantics is easier to read because we search through the loop step-by-
step (something we could only do in natural semantics by jumping through some hoops).

 10

[MOObegin search] env + <(MOO1 S1) S2, s> ⇒
 env + <MOO2 S2, s>

if mp = 0

[MOOsearch] env + <(MOO2 S1) S2, s> ⇒
 env + <MOO2 S2, s> S1 ≠ MOO & S1 ≠ moo

[MOObegin nest]
env + <(MOO2 MOO) S2, s> ⇒
 env + <MOO2 S2, s[l → l + 1]>

[MOOend nest]
env + <(MOO2 moo) S2, s> ⇒
 env + <MOO2 S2, s[l → l – 1]>

if l > 0

[MOOend search] env + <(MOO2 moo) S2, s> ⇒ <S2, s> if l = 0

Instruction generation
The rules for instruction generation with mOO are the same as in natural semantics (we change →
to ⇒). We do not include them here.

Comparison of semantics denotations
Now that we have specified the natural and structural operational semantics of COW, we are in a
position to consider the differences. The natural semantics is useful if we are able to define a
relationship between the initial state and the final state of the execution of an instruction (like we
can do in the While-language [Nielson92]). In COW we were unable to do this for loops, due to
the existence of ‘half’ while loops: there is no guarantee that a MOO (begin loop) is followed by a
matching moo (end loop). In the structural operational semantics we only look ahead one step,
resulting in more readable semantics.

 11

Turing Completeness
We still need to prove that the programming language COW is Turing complete. This can be
proven in the following ways [Faase]:

1) Show that there is a mapping from each possible Turing machine to a program in COW;
2) Show that there is a COW program that simulates a universal Turing machine;
3) Show that COW is equivalent to a language known to be Turing complete;
4) Show that COW is able to compute all computable functions.

Options 2 and 3 look to be very complex. Option one is interesting, but will result in a large COW
program that will serve as proof. Since COW programs are hard to read, we do not think that this
is a convenient proof to follow, but the approach is clear: if we can show that COW is able to
search through a table structure in memory, read coded Turing machine transitions from it and
execute them, then we proven most of what we need to prove.

Computable functions
We believe that option 4 gives us the most transparent proof. According to [Sudkamp98] the
computable functions are:

a) The functions
- successor s: s(x) = x + 1
- zero z: z(x) = 0
- projection pi

(n) : pi
(n) (x1…xn) = x i, 1 ≤ i ≤ n

b) Functions created through functional composition, i.e.
 f(x1,…, xk) = h(g1(x1,…, xk), …, g2(x1,…, xk))
The computability of f follows if g and h are computable.

c) Functions created through primitive recursion.
If g and h are computable (with n and n+2 arguments, respectively), then
 f (x1,…, xn, 0) = g (x1, …, xn)
 f (x1,…, xn, y+1) = h (x1, …, xn, y, f (x1, …, xn, y))
is also computable.

d) The function f created through minimalisation is also computable:
 f (x1,…, xn) = µz [p(x1,…, xn, z)]
if p is a computable predicate with n+1 arguments. Minimalisation yields the smallest z
for which p(x1,…, xn, z) is true (1).

Proof structure
We need to show that

a) there is a function mechanism in COW;
b) s, z and p exist in COW;
c) functies in COW can be composed;
d) a COW function can call itself recursively;
e) minimalisatie can be implemented in COW (using recursion).

If COW can do all of these things, then the language is Turing complete.

Function mechanism
We state that

a) If COW is able to provide a function with its arguments, somewhere in memory (the
‘stack’) and

 12

b) some piece of code (the function) can use these arguments and replace its first argument
with its result after execution

then we have a function mechanism. The nice thing about this mechanism is that functional
composition follows immediately from it: if the function g in f o g yields x, then this result is placed
in the memory location where f expects its argument.
We will say the a function call consists of a prelude, which sets up the arguments for use by a
function f, and a postlude, which performs cleanup if necessary.

PRE f POST

The prelude does the following:

• Moves the memory pointer to the memory area where the function arguments will be placed.
This can be done using the instructions mOo and moO.

• For each argument xi:
o Let m[p] := xi. This can be done with OOO and MoO.
o If more arguments follow, the prelude increases the memory pointer by one (with

moO).
• Move the memory pointer back to the first argument.

The memory contents from memory pointer p, after the prelude, looks like this:

X1 X2 ... Xn

p
The function body follows the prelude, and this code may assume that the memory pointer points
to its first argument. The function knows how many arguments it has, and provides the code that
retrieves the arguments. The function is responsible for replacing its first argument with its result.
The result after execution of a function is therefore:

R X2 ... Xn

p
Here, R represents the function result. Note that the values x2…xn are undefined. The function is
free to change them. It might be better if R did not overwrite a function argument (cf. the C
function call mechanism), so that the prelude would have to reserve space for R on the stack.
However, the approach we use is sufficient for our purposes.
The postlude has no work to do. With our mechanism, the code that follows f can use the function
result, even if this code is another function g (with one argument). We could have a postlude that
sets all arguments used (except the result) to zero, but this is unnecessary.

 13

Basic functions
We show that the functions s, z and pi

(n) exist in COW by defining them.

The successor function is:

s ≡ MoO

The zero function is:

z ≡ OOO

The projection function is:

 pi
(n) ≡ moOi-1 MMM mOoi-1 MMM

Functional composition
We define functional composition as:

Let f be the composition of a function h: Nn → N with the functions g1, g2, ..., gn, all Nk → N. If all
gi and h are computable, then f is also computable.

In COW, such a construction looks like this (for the sample function h(g1(x1,x2),g2(x1,x2)):

PRE g1 INTER g2 REWIND h
f:

POST

The prelude places the arguments for function g1 on the stack, so that the stack looks like this:
(for the sample function):

X1 X2

p
The function g1 uses the arguments x1 and x2, and places its result at position p. We now place
an interlude between two function gi and gj, which increases the memory pointer p by 1 and
places the arguments for function gj on the stack. The result of the interlude after g1 in this
example:

X1 X2

p

g1(x1,x2)

Execution of g2 yields:

p

g1(x1,x2) g2(x1,x2)

In order to execute h with the results of g1 and g2 we need the rewind element. This code moves
the memory pointer back to the first result, i.e. the instruction mOo is executed n-1 times. After
this, h can be executed directly with the arguments on the stack. So, rewind is the prelude of h.

It follows from this example that functional composition is possible in COW.

Primitive recursion
COW does not have a function call mechanism. The only tool we have to implement recursion is
the while loop. We can do this by evaluating the recursion bottom-up.
Primitive recursion is defined as:
 f (x1,…, xn, 0) = g (x1, …, xn)
 f (x1,…, xn, y+1) = h (x1, …, xn, y, f (x1, …, xn, y))

 14

If we first compute g(x1, …, xn), then apply the function h to the result (and a suitable y), and
repeat the application of h as many times as necessary, then we achieve the desired result. Of
course a recursion is always evaluated this way, but we make the order explicit in our proof, so
that we can solve the recursion using a while loop.
Diagrams are too complex for this implementation. We will illustrate the approach by showing the
contents of the stack during the computation, where x is short for the vector x1, x2, …, xn.

x, y The prelude of f places x and y on the stack.

x, y, g(x) g(x) is evaluated. This is the basis for the recursion. A
postlude makes sure that the result of g(x) is stored on
the stack just after the arguments x and y.

x, y = 1, g(x), c Now, let c := y, and y := 1. The counter c keeps track of
the number of recursion iterations we must still execute.
Since the counter decrements (rather than increments),
we can use a while loop.

x, 1, h(x,1,g(x)) c-1 We execute h with parameters x, y and g(x). Here, g(x) is
the value of f for (x, y-1).

x, 2, h(x,2,h(x,1,g(x))) c-2 We execute h with parameters x, y and h(x,2,f), where f
represents the previous value of the recursion.

x, 3, h(x,3,h(x,2,h(x,1,g(x)))) c-3 We execute h with parameters x, y and h(x,3,f), where f
represents the previous value of the recursion.

h(x, y, f(x, y)) When the counter c reaches 0, the recursion ends. This
means that in our implementation, the while loop is not
repeated anymore. A postlude makes sure that the result
h(x,y,f(x,y)) is stored on the first stack position, so that it
may be available for a next function in a functional
composition.

In order to evaluate the computation suggested by this stack trace, COW must be able to

• Copy function arguments;

• Move function arguments;

• Execute a while loop.

COW has instructions to perform these operations (as already shown in the discussions on the
function mechanism and functional composition), so that primitive recursion can be implemented
in COW.

Minimalisation
Minimalisation also uses recursion, but the solution is simpler in this case. We make use of a
stack trace to illustrate minimalisation:

x The prelude of function f places x on the stack.

1, x The termination condition of the minimalisation (is there a
suitable z yet?) is initially untrue. We represent this as 1,
since this value is used to decide whether the while loop
should be executed again.

1, 0, x, 0 We start with z = 0. A copy of z is placed on the second
stack position (and also behind x).

1, 0, p(x, 0) = 0 The predicate p is evaluated with arguments x and z.
Suppose it yields 0.

1, 0, p(x, 0) = 0 The result is copied to the first stack position, and then

 15

inverted.
1, 1, x, 1 The while loop repeats. z is incremented by 1 and placed

on the stack. We needed the copy of z to determine
previous value.

1, 1, p(x, 1) = 1 The predicate p is evaluated with arguments x and z.
Suppose it yields 1.

0, 1, p(x, 1) = 1 The result is copied to the first stack position, then
inverted. The while loop now terminatesm because the
termination condition (the first stack position) is now 0.

1, … The current value of z is copied to the first stack position
and represents the result of the minimalisation.

It follows that we can realize minimalisation in COW using a while loop.

Result
We have shown that COW has a function mechanism, with which we can implement the
successor function, the zero function, the projecion function, functional composition, primitive
recursion and minimalisation. From this we may deduce that COW is Turing complete.

 16

References

[Faase] Faase, Frans: Brainf*** is Turing-Complete
 http://home.planet.nl/~faase009/Ha_bf_Turing.html

[Heber] Heber, Sean: COW − Programming for Bovines
 http://www.bigzaphod.org/cow/

[Nielson92] Nielson, Hanne Riis & Nielson, Flemming: Semantics with Applications: a Formal
 Introduction, John Wiley & Sons, 1992.
 http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.pdf

[Sudkamp98] Sudkamp, Thomas: Languages and Machines, 2nd edition, Addison Wesley
 Longman, 1998.

